CHAPTER FOUR

Actio Systems

Introduction

This section will introduce the concept of an Action System as a set of parameterless mutually recursive procedures. A program written using labels and jumps translates directly into an action system. Note however that if the end of the body of an action is reached, then control is passed to the action which called it (or to the statement following the action system) rather than “falling through” to the next label. The exception to this is a special action called the terminating action, usually denoted Z, which when called results in the immediate termination of the whole action system.

First e prove some useful results about loop unrolling and recursion unfolding.

Defn: If T occurs in S and replacing any occurrence of T in S by exit(0) gives a terminal statement of S then we say that the occurrence of T is in a terminal position in S.

Lemma: If each exit statement of S is in a terminal position then:
{depth=n}; guard_n(S) ≈ {depth=n}; S[depth:=depth−p / exit(p)]

Proof: Note that S cannot contain any do-loops since such a loop can only be terminated by an exit statement which is within the loop and therefore not in a terminal position. Any loop will not terminate so can be replaced by abort.

The proof is by induction on the structure of S, ignoring the do... od case as noted above. The only non-trivial case is S=S_1;S_2: S_1 cannot contain any exit statement since such a statement is not in a terminal position in S.

So guard_n(S_1) ≈ if depth=n then S_1 fi which preserves depth. So
{depth=n}; guard_n(S) ≈ {depth=n}; S_1; {depth=n}; guard_n(S_2)
≈ {depth=n}; S_1; {depth=n}; S_2[depth:=depth−p / exit(p)]
≈ {depth=n}; S_1; S_2[depth:=depth−p / exit(p)]
≈ {depth=n}; (S_1;S_2)[depth:=depth−p / exit(p)]
since S_1 has no exits
which proves the result.

Selective unrolling is useful when there is a much more efficient version of the loop body which can be used under certain conditions. Selective unrolling is also frequently used as a part of the proof of other transformations.
Lemma: Selective unrolling of while loops:

\[\Delta \vdash \text{while } B \text{ do } S \text{ od } \approx \text{while } B \land Q \text{ then } S \text{ fi od } \]

Proof: We will prove by induction on \(n \) that:

\[\text{while } B \text{ do } S; \text{if } B \land Q \text{ then } S \text{ fi od}^n \approx \text{while } B \text{ do } S \text{ od} \]

while B do S; if B ∧ Q then S fi od^n ≤ while B do S od

\[\approx \text{if } B \text{ then } S; \text{if } B \land Q \text{ then S fi } + |T| \text{ else T fi } / |T| \Psi \land \tau = 0 \text{ od} \]

The converse is similar.
Examples: Ψ can be any condition on integers and exit statements for example:

$\Psi(n,T) \equiv \text{false}$

means that no substitution takes place: the theorem is trivial in this case.

$\Psi(n,T) \equiv \text{true}$

means that every allowed substitution takes place: if $Q(n,T)$ gives the same formula for each n and T then this is equivalent to the result of the last theorem with simple absorption applied.

$\Psi(n,T) \equiv (n=1 \lor n=3) \land T=T_0$

means that the first and third occurrences of T_0 are substituted provided the other conditions hold.

Proof: Let x be a new variable which does not occur on S, B or Q. Then

while B do S od

\approx beg x: while B do S od end since x does not occur in S.

\approx beg x: while B do $x:=0; S$ [if $Q(n,T)$ then $x:=1$ else $x:=0$ fi; $T / (n,T)$

$[\Psi(n,T) \land ts(n,T,S) \land \tau(n,T,S)=0]$

$[x:=0; T / T\neg \Psi \land \tau =0]$

$[x:=0; T / T|\tau >0]$ od end

since the local variable x can be freely assigned to.

Note that if the nth occurrence of T is a terminal statement then: if $\Psi(n,T)$ is satisfied and $\tau(n,T,S)=0$ the value 1 is assigned to x, while the value 0 is assigned to x if $\neg \Psi(n,T)$ or $\tau(n,T,S)>0$. This covers all the terminal statements of S.

\approx beg x: while B do S [if $Q(n,T)$ then $x:=1$ else $x:=0$ fi; $T / T\neg \Psi \land \tau =0]$

$[x:=0; T / T\neg \Psi \land \tau =0]$

$[x:=0; T / T|\tau >0]$ od end

by selective unrolling (where $[...]$ represents the substitutions).

\approx beg x: while B do S[if $Q(n,T)$ then $x:=1$ else $x:=0$ fi;

if $B \land x=1$ then $S[...]$ fi $+$ $T / T\neg \Psi \land \tau =0]$

$[x:=0; T / T|\tau >0]$ od end

by simple absorption.

\approx beg x: while B do S[if $Q(n,T)$

then $x:=1$; if $B \land x=1$ then $S[...]$ fi

else $x:=0$; if $B \land x=1$ then $S[...]$ fi $+$ $T / T\neg \Psi \land \tau =0]$

$[x:=0; T / T|\tau >0]$ od end
\[\approx \texttt{beg x: while B do S[if Q(n,T) then x:=1; if B then S[... fi
\begin{array}{c}
\text{else x:=0 fi +[T] / T}\Psi \land \tau = 0] \\
x:=0;T / T|\neg \Psi \land \tau = 0][x:=0;T / T|\tau > 0] \texttt{od end}
\end{array} \]
by pruning the if statements. Now x is no longer accessed.

\[\approx \texttt{while B do S[if B \land Q(n,T) then S fi +[T] / T}\Psi \land \tau = 0] \\
[T / T|\neg \Psi \land \tau = 0][T / T|\tau > 0] \texttt{od}
\]
by removing the ghost variable x.

\[\approx \texttt{while B do S [if B \land Q(n,T) then S fi +[T] / T}\Psi \land \tau = 0] \texttt{od}
\]
as required.

The technique used in this proof is to add a “ghost variable” (x in the proof) which is set to one value for some of the terminal statements and some of the conditions and to another value for the others and which can then be tested in a following if statement so that the branch of the if taken depends on which terminal statement was executed. This technique is made use of in several forms of selective unrolling and unfolding.

Theorem: Selective unrolling for unbounded loops. (ie do...od loops):
If \(\Psi, Q \) and \(S \) are as above :
\[\Delta \vdash \texttt{do S od} \approx \texttt{do S[if Q(n,T) then S fi +[T] / T}\Psi \land \tau = 0] \texttt{od} \]

Proof: Similar to the previous theorem.

Example:
P \equiv \texttt{while n>2 do}
\begin{array}{c}
\text{if even(n) then n:=n/2} \\
\text{else n:=n+1 fi od}
\end{array}
To prove the termination of this directly we need to find a term \(\phi(n) \) which is decreased on every step of the loop—which is not particularly easy!

One possibility is: \(\phi(n) = n+1-2.((n+1) \text{ mod } 2) \)
which gives: \(\phi(n) = n-1 \) if n is even
\[= n+1 \text{ if n is odd.} \]
If n is odd then \(\phi(n)=n+1 \) and \(\phi(n+1)=n < \phi(n) \) since \(n+1 \) is even.
If n is even then \(\phi(n)=n-1, \ \phi(n/2) = n/2-1 \) if \(n/2 \) is even
\[= n/2+1 \text{ if n/2 is odd.} \]
\[n/2-1 < n-1 \text{ for all integers } n>0. \]
\[n/2+1 < n-1 \iff n-n/2 > 2 \iff n>4 \]
which is true for all even integers \(n>2 \) such that \(n/2 \) is odd.
So if n is even and \(n>2: \)
\[\phi(n/2) = n/2 - 1 < n-1 = \phi(n) \] if \(n/2 \) is even.
\[= n/2+1 < n-1 = \phi(n) \] if \(n/2 \) is odd.
So \(\phi(n) \) is decreased on every step and the program terminates.

As is frequently the case with such proofs of termination, finding a function \(\phi(n) \) which is decreased on every iteration required some ingenuity. However if we note that \(n+1 \) is even when \(n \) is odd then we see that the next iteration of the loop will select the assignment \(n:=n/2 \) and \((n+1)/2 \) is always \(<n \) for odd \(n>1 \). To prove termination therefore we use selective unrolling to insert a copy of the body of the loop after the else part of the second if statement:

\[P \approx \text{while } n \geq 2 \text{ do } \]
\[\quad \text{if even}(n) \text{ then } n:=n/2 \]
\[\quad \text{else } n:=n+1; \]
\[\quad \text{if } n \geq 2 \]
\[\quad \text{then if even}(n) \text{ then } n:=n/2 \]
\[\quad \text{else } n:=n+1 \text{ fi fi od.} \]

After the first if in the body we must have \(n \geq 2 \), hence after \(n:=n+1 \) we must have \(n \geq 3 \). Also \(n \) was odd before 1 was added so \(n \) must be even:

\[P \approx \text{while } n \leq 2 \text{ do } \]
\[\quad \text{if even}(n) \text{ then } n:=n/2 \]
\[\quad \text{else } n:=n+1; \{n \geq 3 \land \text{even}(n)\}; \]
\[\quad \text{if } n \leq 2 \]
\[\quad \text{then if even}(n) \text{ then } n:=n/2 \]
\[\quad \text{else } n:=n+1 \text{ fi fi od.} \]

Prune the ifs after the assertion and merge the two assignments:
\[P \approx \text{while } n \leq 2 \text{ do } \]
\[\quad \text{if even}(n) \text{ then } n:=n/2 \]
\[\quad \text{else } n:=(n+1)/2 \text{ fi od.} \]

Now \((n+1)/2 < n \iff n+1 < 2.n \iff 1<n \)
which is true within the loop. Hence \(n \) is decreased on every step and the loop terminates. So, by carrying out some transformations, we have turned a difficult termination proof into a trivial one (and incidentally made the program more efficient).

We now prove a type of “selective unfolding” for recursive statements:

Theorem: Selective Unfolding: \(\Delta \vdash \text{proc } X \equiv S. \approx \text{proc } X \equiv S[\text{if } Q \text{ then } S \text{ else } X \text{ fi } / X]. \)

Proof: We prove by induction on \(n: \)

\[\text{proc } X \equiv S[\text{if } Q \text{ then } S \text{ else } X \text{ fi } / X], n \leq \text{proc } X \equiv S. \]
The induction step is:

\[\text{proc } X \equiv S[\text{if } Q \text{ then } S \text{ else } X \triangleright / X]^{n+1} \]
\[\approx S[\text{if } Q \text{ then } S \text{ else } X \triangleright / X][\text{proc } X \equiv S[\text{if } Q \text{ then } S \text{ else } X \triangleright / X]^n / X] \]
\[\leq S[\text{if } Q \text{ then } S \text{ else } X \triangleright / X][\text{proc } X \equiv S. / X] \text{ by induction hypothesis.} \]
\[\approx S[\text{if } Q \text{ then } S \text{ else } X \triangleright / X][\text{proc } X \equiv S. / X] \text{ else } X[\text{proc } X \equiv S. / X] \triangleright / X] \]
\[\approx S[\text{if } Q \text{ then } \text{proc } X \equiv S. \text{ else } \text{proc } X \equiv S. \triangleright / X] \text{ by folding.} \]
\[\approx S[\text{proc } X \equiv S. / X] \text{ redundant test.} \]
\[\approx \text{proc } X \equiv S. \text{ folding.} \]

Hence \(\text{proc } X \equiv S[\text{if } Q \text{ then } S \text{ else } X \triangleright / X] \leq \text{proc } X \equiv S. \text{ by induction rule for recursion.} \)

Conversely we prove \(\text{proc } X \equiv S. n \leq \text{proc } X \equiv S[\text{if } Q \text{ then } S \text{ else } X \triangleright / X] \), by induction.

Let \(S' = \text{proc } X \equiv S[\text{if } Q \text{ then } S \text{ else } X \triangleright / X] \).

\(n=0 \) trivial

\(n=1: \text{proc } X \equiv S.1 \approx S[\text{abort}/X] \leq S[\text{if } Q \text{ then } S \text{ else } X \triangleright / X][S' / X] \)
\[\approx S' \text{ by folding.} \]

For \(n>1: \)

\(\text{proc } X \equiv S. n+1 \approx S[\text{proc } X \equiv S. n / X] \approx S[\text{if } Q \text{ then } \text{proc } X \equiv S. n \text{ else } \text{proc } X \equiv S. n \triangleright / X] \)
\[\approx S[\text{if } Q \text{ then } S[\text{proc } X \equiv S. n-1/X] \text{ else } \text{proc } X \equiv S. n \triangleright / X] \text{ since } n>1. \]
\[\leq S[\text{if } Q \text{ then } S[S'/X] \text{ else } S' \triangleright / X] \text{ by induction hyp} \]
\[\approx S[\text{if } Q \text{ then } S \text{ else } X \triangleright / X][S'/X] \]
\[\approx S' \text{ by folding.} \]

As before, we can generalise this selective unfolding so that, for each \(n \), the \(n \)th \(X \) in \(S \) may be replaced by \(\text{if } Q(n,X) \text{ then } S \text{ else } X \triangleright \) where \(Q \) may vary depending on which \(X \) is substituted.

The following Lemma will be used in several theorems concerned with the transformation of recursive action systems to iterative form:

Lemma: Unroll Last Step of Loop:

If \(B' \Rightarrow \neg B \) and \(\Delta \vdash \{B'\}; S' \approx \{B'\}; S'; \{\neg B\} \) then:

\[\Delta \vdash \{B\}; \text{while } B \text{ do } S; \text{ if } B' \text{ then } S' \triangleright \text{ od } \approx \{B\}; \text{while } B \text{ do } S \text{ od}; \text{ if } B' \text{ then } S' \triangleright \]

Proof: Use induction on \(n \) to prove:

\(\{B\}; \text{while } B \text{ do } S; \text{ if } B' \text{ then } S' \triangleright \text{ od}^{n+1} \approx \{B\}; \text{while } B \text{ do } S \text{ od}^n; \text{ if } B' \text{ then } S' \triangleright \)

Then use the generalised induction rule for loops.
The reasoning behind normal loop unfolding is that under certain conditions the body of a loop may simplify drastically and hence may be replaced by a much more efficient version. However, in some cases it may be that the condition which allowed us to simplify the loop body is likely still to hold after execution of the simplified body and it makes sense to try and insert a whole loop rather than just the body of the loop. We wish to prove the following theorem:

Theorem: (Entire Loop Unfolding): If $B' \Rightarrow B$ then

$$\Delta \vdash \text{while } B \text{ do } S \text{ od } \approx \text{while } B \text{ do } S; \text{ if } Q \text{ then } \text{while } B' \text{ do } S \text{ od } \text{fi } \text{od}.$$

Proof: We use the induction rule for loops:

Let $DO = \text{while } B \text{ do } S \text{ od}$

Let $DO' = \text{while } B' \text{ do } S \text{ od}$

Claim(i): For $n < \omega$: $\text{while } B \text{ do } S; \text{ if } Q \text{ then } DO' \text{ fi } \text{od}^n \leq DO$.

Proof of Claim(i): $n=0$ is trivial. Suppose result holds for n:

- $\text{while } B \text{ do } S; \text{ if } Q \text{ then } DO' \text{ fi } \text{od}^{n+1}$
- $\approx \text{if } B \text{ then } S; \text{ if } Q \text{ then } DO' \text{ fi } \text{while } B \text{ do } S; \text{ if } Q \text{ then } DO' \text{ fi } \text{od}^n \text{ fi}$
- $\leq \text{if } B \text{ then } S; \text{ if } Q \text{ then } DO' \text{ fi } \text{DO } \text{fi}$ by induction hypothesis.

- $\approx \text{if } B \text{ then } S; \text{ if } Q \text{ then } DO' \text{ fi } \text{DO } \text{fi}$ forward expansion of if

Now $B' \Rightarrow B$ gives $DO'; DO \approx DO$ by loop merging, so this is:

- $\approx \text{if } B \text{ then } S; \text{ if } Q \text{ then } DO \text{ else } DO \text{ fi}$

- $\approx \text{if } B \text{ then } S; \text{ DO prune conditional.}$

- $\approx \text{DO by first step unrolling.}$

Hence by the induction rule for loops:

$\text{while } B \text{ do } S; \text{ if } Q \text{ then } DO' \text{ fi } \text{od}^n \leq DO$ for all $n < \omega$.

Claim(ii): For $n < \omega$: $DO^n \leq \text{while } B \text{ do } S; \text{ if } Q \text{ then } DO' \text{ fi } \text{od}$

Proof of Claim(ii): $n=0$ is trivial. Suppose result holds for n:

- $DO^{n+1} \approx \text{if } B \text{ then } S; DO^n \text{ fi}$

- $\approx \text{if } B \text{ then } S; \text{ if } Q \text{ then } DO^n \text{ else } DO^n \text{ fi}$ by splitting a tautology.

From the proof of loop merging we have $DO^n \leq DO'^n$; DO^n, we also have $DO'^n \leq DO'$ so $DO^n \leq DO'; DO^n$. So we get:

- $\leq \text{if } B \text{ then } S; \text{ if } Q \text{ then } DO'; DO^n \text{ else } DO^n \text{ fi}$

- $\leq \text{if } B \text{ then } S; \text{ if } Q \text{ then } DO'; \text{while } B \text{ do } S; \text{ if } Q \text{ then } DO' \text{ fi } \text{od}$

- $\text{else while } B \text{ do } S; \text{ if } Q \text{ then } DO' \text{ fi } \text{od } \text{fi}$

by induction hypothesis.

- $\approx \text{if } B \text{ then } S; \text{ if } Q \text{ then } DO' \text{ fi } \text{while } B \text{ do } S; \text{ if } Q \text{ then } DO' \text{ fi } \text{od } \text{fi}$
by forward expansion of \(\text{if} \)
\[
\approx \text{while } B \text{ do } S; \text{ if } Q \text{ then } \text{DO' fi od} \]
by first step unrolling.

As was the case for selective unrolling we can use this result to prove a more general version where the unfolded loop is inserted after certain selected terminal statements of the loop:

Theorem: For each \(n \) and \(T \) where the \(n \)th occurrence of \(T \) is a terminal statement of \(S \), if the formula \(B'(n,T) \Rightarrow B \) holds then:
\[
\Delta \vdash \text{while } B \text{ do } S \text{ od} \approx \text{while } B \text{ do } S'[\text{if } Q(n,T) \text{ then } \text{while } B'(n,T) \text{ do } S \text{ od fi } + \delta(T) / (n,T) \text{ where } \tau = 0 \land \Psi] \text{ od}
\]

Note that \(\text{while } B \text{ do } S \text{ od} + k \approx \text{while } B \text{ do } S \text{ od; exit}(k) \) since a while loop is a terminal statement.

For unbounded loops we have the theorem:
\[
\Delta \vdash \text{do } S \text{ od} \approx \text{do } S'[\text{if } Q(n,T) \text{ then } (\text{do if } Q(n,T) \text{ then } S \text{ else } \text{exit(2) fi od} + 1 \text{ fi} + \delta(T) / (n,T) \text{ where } \tau = 0 \land \Psi] \text{ od}
\]

For double-nested loops we can replace terminal statements with terminal value 0 or 1 by copies of the whole loop:
\[
\Delta \vdash \text{do do } S \text{ od od} \approx \text{do do } S'[\text{if } Q(n,T) \text{ then } (\text{do if } Q(n,T) \text{ then } S + (2,2) \text{ else } \text{exit(2) fi od od fi} + \delta(T) / (n,T) \text{ where } \tau = 0 \lor \tau = 1 \land \Psi] \text{ od od}
\]

This important general transformation is used in the transformation from recursion to iteration in a regular action system (see Theorem A below). The proof is more complex than the other forms of selective unrolling but follows the same pattern:

(i) Add assignments to a new variable at each terminal position, assigning 1 if the unrolling is to occur and 0 if the unrolling is not to occur.

(ii) Unroll the loop, including a test of this variable.

(iii) Absorb the unrolled loop into the terminal positions.

(iv) Simplify the result, removing the variable \(x \).

Example: This is a generalisation of an example in [Dijkstra 76].
Let \(\text{DO} = \text{while } B \text{ do} \)
\[
\begin{align*}
\text{while } B' \land B & \text{ do } S' \text{ od; } \\
S & \text{ od}
\end{align*}
\]
Let \(\text{DO}'' = \text{while } B \text{ do} \)
\[
\begin{align*}
\text{if } B' & \text{ then } S' \text{ else } S \text{ fi od}
\end{align*}
\]
Then \(\text{DO} \approx \text{DO}'' \).

Proof: By entire loop unrolling after \(S' \) in \(\text{DO}'' \).

Cor: If \(\{ B' \}; S' \{ B \} \); \(\{ B \} \) then:
\[
\begin{align*}
\text{while } B & \text{ do } \approx \text{while } B \text{ do} \text{ while } B' \text{ do } S' \text{ od; } \text{if } B' \text{ then } S \text{ else } S \text{ fi od}
\end{align*}
\]

Proof: Show that \(B \) is invariant over the inner loop.

Theorem: Elimination of Tail-Recursion:
If \(A \) does not occur in \(S \) or \(S_1 \) then:
\[
\Delta \vdash \{ B \}; \text{proc } A \equiv \text{if } B \text{ then } A \text{ else } S_1 \text{ fi.}
\]
\[
\approx \{ B \}; \text{while } B \text{ do } S \text{ od; } S_1
\]

Proof: By the definition of the while loop we have:
\[
\begin{align*}
\{ B \}; \text{while } B & \text{ do } S \text{ od; } S_1 \\
& \approx \{ B \}; \text{proc } A \equiv \text{if } B \text{ then } S \text{; A fi. }; S_1
\end{align*}
\]
For each \(n < \omega \) use absorption to prove:
\[
\begin{align*}
\{ B \}; \text{proc } A & \equiv \text{if } B \text{ then } S \text{; A fi.}; S_1 \approx \{ B \}; \text{proc } A \equiv \text{if } B \text{ then } S \text{; A else } S_1 \text{ fi.}; S
\end{align*}
\]
Then by unfolding we get:
\[
\begin{align*}
\approx \{ B \}; S; \text{proc } A & \equiv \text{if } B \text{ then } S \text{; A else } S_1 \text{ fi.}; S \approx \{ B \}; \text{proc } A \equiv \text{if } B \text{ then } S \text{; A else } S_1 \text{ fi.}; S
\end{align*}
\]
Then by induction on \(n \).

This completes the proof.

Theorem: Tail-Recursion (general form):
\[
\Delta \vdash \text{proc } A \equiv \text{if } B \text{ then } S \text{; A else } S_1 \text{ fi.} \approx \text{proc } A \equiv \text{while } B \text{ do } S \text{ od; } S_1.
\]

Note that in this case \(S \) or \(S_1 \) may contain further calls to \(A \). This transformation is an example of “replacing a terminal procedure call by a jump” as described in [Knuth 74].

Proof: By induction. The induction step is:
\[
\text{proc } A \equiv \text{if } B \text{ then } S \text{; A else } S_1 \text{ fi.}; S_{n+1}
\]
≈ if B then S[proc A ≡ if B then S; A else S_1 fi./A]; proc A ≡ if B then S; A fi.
else S_1[proc A ≡ if B then S; A else S_1 fi./A] fi
≤ if B then S[proc A ≡ while B do S od; S_1./A]; proc A ≡ while B do S od; S_1.
else S_1[proc A ≡ while B do S od; S_1./A] fi by induction hypothesis.

Let DO= while B do S od; S_1.
Now proc A ≡ DO. ≈ while B do S[proc A ≡ DO./A] od; S_1[proc A ≡ DO./A] by unfolding
≈ if B then S[proc A ≡ DO./A]; while B do S[proc A ≡ DO./A] od fi;
S_1[proc A ≡ DO./A] by unrolling.
≈ if B then S[proc A ≡ DO./A]; proc A ≡ DO. fi by folding.
Hence proc A ≡ if B then S; A else S_1 fi. \(n+1 \) ≤ proc A ≡ DO.
Hence by induction proc A ≡ if B then S; A fi. ≤ proc A ≡ DO.

For the converse we first show:
while B do S[proc A ≡ if B then S; A else S_1 fi./A] od^m;
S_1[proc A ≡ if B then S; A else S_1 fi./A]
≤ proc A ≡ if B then S; A else S_1 fi.
for all \(m < \omega \) by induction on \(m \). Induction step is:
while B do S[proc A ≡ if B then S; A else S_1 fi./A] od^{m+1}; S_1[...]
≈ if B then S[proc A ≡ if B then S; A else S_1 fi./A]; while B do... od^m fi; S_1[...]
≤ if B then S[proc A ≡ if B then S; A else S_1 fi./A];
proc A ≡ if B then S; A else S_1 fi. fi by induction hypothesis.
≈ if B then S; A else S_1 fi [proc A ≡ if B then S; A fi./A]
≈ proc A ≡ if B then S; A else S_1 fi. fi by folding.
Hence while B do S[proc A ≡ if B then S; A else S_1 fi./A] od; S_1[...]
≤ proc A ≡ if B then S; A else S_1 fi..}

Now we prove by induction on \(n \):
proc A ≡ while B do S od; S_1.^n ≤ proc A ≡ if B then S; A else S_1 fi..
Induction step:
proc A ≡ while B do S od; S_1.^{n+1}
≈ while B do S[proc A ≡ while B do S od.^n/A] od; S_1[...]
≤ while B do S[proc A ≡ if B then S; A fi./A] od; S_1[...]
≤ proc A ≡ if B then S; A else S_1 fi. from above.
Hence by induction proc A ≡ DO. ≤ proc A ≡ if B then S; A else S_1 fi.

Hence proc A ≡ while B do S od; SS1. ≈ proc A ≡ if B then S; A else S_1 fi.
Our recursive statement does not directly allow the definition of mutually recursive procedures (since all calls to a procedure must occur within the procedure body). However we can define a set of mutually recursive procedures by putting them all within a single procedure. For example suppose we have two statements, S_1 and S_2, both containing statement variables X_1 and X_2 (where X_1 refers to S_1 and X_2 refers to S_2). We can represent these by a single recursive program:

```
x:=1; proc A ≡ if x=1 → S_1[x:=1;A/X_1][x:=2;A/X_2] fi
    □ x=2 → S_2[x:=1;A/X_1][x:=2;A/X_2] fi.
```

Here the additional variable x records which is the next procedure which is actually being called when the composite procedure A is called. This method of representing mutually recursive procedures will be used to develop techniques for reasoning about action systems. Two action systems are defined to be equivalent if they have equivalent representations. This type of transformation to a different representation is an example of a definitional transformation; by defining the new construct in terms of constructs already introduced we can make full use of the results already proved to prove things about the new construct.

Arsac [Arsac 79] and [Arsac 82] uses a restricted definition of actions together with deterministic assignments, the binary if statement and do loops with exits so there is no place for nondeterminism in his results. He distinguishes between what he calls “syntactic equivalence” (for programs which perform the same sequence of operations and thus have the same operational semantics) and “semantic equivalence” (for programs which give the same final state, if any, for each initial state and so have the same denotational semantics). He uses mainly syntactic transformations together with a few semantic transformations.

We shall give a more general definition of actions in terms of our recursive statement. This will allow us to use all our other control structures, including the nondeterministic ones and general specifications, within our actions.

Defn: An action is a parameterless procedure acting on global variables (cf [Arsac 79], [Arsac 82]). It is written in the form $A ≡ S$ where A is a statement variable (the name of the action) and S is a statement (the action body). A set of (mutually recursive) actions is called an action system. There may sometimes be a special action (usually denoted Z), execution of which causes termination of the whole action system even if there are unfinished recursive calls.

The action system: $AS = \langle A_1 ≡ S_1, A_2 ≡ S_2, \ldots, A_n ≡ S_n \rangle$ (where S_1, \ldots, S_n have no terminal statement with terminal value >0) which may be written:

- $A_1 ≡ S_1$,
- $A_2 ≡ S_2$,
-
- $A_n ≡ S_n$.

is defined (by a definitional transformation) as follows:

\[
\text{AS} \approx \begin{align*}
\text{beg action:=}'A_1'; (\mu A.S) \text{ end} \\
\text{where S= if action='A_1' \rightarrow action='O'; guard}_Z(S_1)[action='A_i';A/A_i] \\
& \quad \quad \quad \text{ guard}_Z(S_2)[action='A_i';A/A_i] \\
& \quad \quad \quad \quad \text{ etc.}
\end{align*}
\]

Here action is a new variable which contains the name of the current action and
\[
\text{guard}_Z(S) \text{ is defined in a similar way to } \text{guard}_n(S) \text{ so that:}
\]

\[
\begin{align*}
\text{guard}_Z(Z) &= DF \text{ action:=}'Z' \\
\text{guard}_Z(v:=e) &= DF \text{ if action='O' then v:=e fi etc.}
\end{align*}
\]

and as soon as action is set to ‘Z’ no further statements will be executed. This ensures the correct operation of the “halting” action. Note that ‘A_1’, . . . , ‘A_n’, ‘O’ and ‘Z’ represent a suitable set of \(n+2\) distinct constant values.

Note that action is never called with action=’Z’ (or anything other than ‘A_1’, . . . , ‘A_n’). The assignment action:=’O’ is not really needed because the variable action will be assigned again before its value is tested; it is added so that we can distinguish the following three cases depending on the value of action:

1/ Currently executing an action: action=’O’.
2/ About to call another (or the same) action (other than the terminating action):
 action= one of ‘A_1’, . . . , ‘A_n’.
3/ Have called the terminating action, all outstanding recursive calls are terminated without any
 statements being executed: action=’Z’.

\textbf{Defn:} An action is regular if every execution of the action leads to an action call. (This is similar to a
regular rule in a Post production system [Post 43]).

\textbf{Defn:} An action system is regular if every action in the system is regular. Any algorithm defined by a
flowchart or a program which contains labels and goto but no procedure calls in non-terminal
positions can be expressed as a regular action system.

\section*{TRANSFORMATIONS INVOLVING ACTIONS}

We will now prove some basic properties of action systems which are frequently used in
program manipulation. “Substitution” is a form of procedure call unfolding, “Identification” is used in
[Arsac 82], we are able to prove this and many other transformations using our “Induction rule for
Action Systems”.

Substitution:
We can always replace any occurrence of an action call by the body of the action. Conversely any statement can be replaced by a new action which has that statement as definition.
More formally:

(a) \(\langle A_1 \equiv S_1, \ldots, A_i \equiv S_i, \ldots, A_n \equiv S_n \rangle \approx \langle A_1 \equiv S_1, \ldots, A_i \equiv S_i[S_j/(m,A_j)], \ldots, A_n \equiv S_n \rangle \)

Where \(S_j[S_j/(m,A_j)] \) means \(S_j \) with the \(m \)th occurrence of \(A_j \) replaced by \(S_j \).

(b) \(\langle A_1 \equiv S_1, \ldots, A_i \equiv S_i, \ldots, A_n \equiv S_n \rangle \approx \langle A_1 \equiv S_1, \ldots, A_i \equiv S_i[A_{n+1}/(m,S_{n+1})], \ldots, A_n \equiv S_n, \ A_{n+1} \equiv S_{n+1} \rangle \)

Where \(S_{n+1} \) is any statement and \(A_{n+1} \) is a new action name.

Proof: (a) LHS is equivalent (by the definitional transformation) to:
\[
\text{beg action:}= \langle A_1 \rangle: (\mu A.S) \ text{end} \\
\text{where S= if \text{action=image}='A_1' \to \text{action=image}=='O'; guard}_Z(S_1)\text{[action=image}=='A_k';A/A_k]\]
\[
\quad \text{\ldots} \\
\quad \text{\ldots} \\
\quad \text{\ldots} \\
\quad \text{\ldots} \\
\quad \text{where the substitution \text{[action=image}=='A_k';A/A_k] \ is short for:} \\
\quad \text{[action=image}=='A_1';A, \text{action=image}=='A_2';A, \ldots, \text{action=image}=='A_n';A/A_1,A_2,\ldots,A_n] \\
\]

RHS is similarly equivalent to:
\[
\text{beg action:}= \langle A_1 \rangle: (\mu A.S) \ text{end} \\
\text{where S' = if \text{action=image}='A_1' \to \text{action=image}=='O'; guard}_Z(S_1)\text{[action=image}=='A_k';A/A_k]\]
\[
\quad \text{\ldots} \\
\quad \text{\ldots} \\
\quad \text{\ldots} \\
\quad \text{\ldots} \\
\quad \text{where the substitution \text{[action=image}=='A_k';A/A_k] \ is short for:} \\
\quad \text{[action=image}=='A_1';A, \text{action=image}=='A_2';A, \ldots, \text{action=image}=='A_n';A/A_1,A_2,\ldots,A_n] \\
\]

By selective unrolling of the recursive statement we can replace the \(m \)th occurrence of \text{action=image}=='A_j';A in \text{guard}_Z(S_i)\text{[action=image}=='A_k';A/A_k] in LHS by \text{action=image}=='A_j';S. Then, by pruning the inner \text{if}, we get:
\[
\text{beg action:}= \langle A_1 \rangle: (\mu A.S) \ text{end} \\
\text{where S= if ...} \]
\(\Box \text{ action} = \text{`A}_i \rightarrow \text{action} := \text{`O}; \)
\(\text{guard}_{Z}(S_i)[\text{action} := \text{`A}_k; \text{A}/\text{A}_k] \)
\(\text{[action} := \text{`A}_j; \text{action} := \text{`O}; \)
\(\text{guard}_{Z}(S_j)[\text{action} := \text{`A}_k; \text{A}/\text{A}_k] / (m, \text{action} := \text{`A}_j; \text{A})] \)

... fi.

Here the \(m \)th occurrence of \(A_j \) is first replaced by \(\text{action} := \text{`A}_j; \text{A} \) which is then replaced by \(\text{action} := \text{`O}; \) \(S_j[\text{action} := \text{`A}_k; \text{A}/\text{A}_k] \). The \(\text{guard}_{Z} \) outside means that the assignment \(\text{action} := \text{`O} \) can be removed. Thus the \(m \)th occurrence of \(A_j \) is replaced by \(\text{guard}_{Z}(S_j)[\text{action} := \text{`A}_k; \text{A}/\text{A}_k] \).

The same result is achieved by replacing the \(m \)th occurrence of \(A_j \) by \(\text{guard}_{Z}(S_j) \) and then carrying out the substitution \([\text{action} := \text{`A}_k; \text{A}/\text{A}_k] \).

Thus we get:
\(\text{beg action} := \text{`A}_1; (\mu A.S) \text{ end} \)
where \(S = \text{if...} \)
\(\Box \text{ action} = \text{`A}_i \rightarrow \text{guard}_{Z}(S_i)[\text{guard}_{Z}(S_j)/(m, A_j)][\text{action} := \text{`A}_k; \text{A}/\text{A}_k] \)

... fi.
This is equivalent (by the definition of \(\text{guard}_{Z} \)) to the RHS.

(b) Add an extra component to the if statement of the form:
\(\Box \text{ action} = \text{`A}_{n+1} \rightarrow \text{action} := \text{`O}; \) \(\text{guard}_{Z}(S_{n+1})[\text{action} := \text{`A}_k; \text{A}/\text{A}_k] \)
which is never executed since \(\text{action} \neq \text{`A}_{n+1} \) is invariant. By part (a) we can replace an occurrence of \(S_{n+1} \) in \(S_i \) by \(A_{n+1} \) which gives the result.

Induction Rule for Action Systems:

Defn: If \(AS = (A_1 \equiv S_1, A_2 \equiv S_2, \ldots, A_p \equiv S_p) \) is an action system and \(1 \leq i \leq p \) then we define
\(AS^0(i) =_{DF} \text{abort} \)
\(AS^n(i) =_{DF} \text{action} := \text{`O}; \) \(\text{guard}_{Z}(S_i)[AS^{n-1}(j)/A_j][1 \leq j \leq p] \) for \(0 < n < \omega \).

This is a generalised version of \(\text{proc X} \equiv S.^n \) with provision for the terminating action. \(AS^n(i) \) is the “\(n \)th truncation” of the \(i \)th action in the system.

Theorem: Induction rule for action systems:
If \(AS = (A_1 \equiv S_1, A_2 \equiv S_2, \ldots, A_p \equiv S_p) \) is an action system and \(S' \) a statement such that
\(AS^n(1) \leq S' \) for all \(n < \omega \)

Then \(AS \leq S' \), ie \(A_1 \leq S' \) (where we are using the name of the first action to denote the whole action system).
Proof: \(AS \approx \text{beg action:='A}_1\); (\(\mu A.S \)) \text{ end} \)

where \(S = \text{if action='A}_1\rightarrow \text{action:='O'; guard}_Z(S_{1})[\text{action:='A}_{k};A/A_k] \)

\[
\begin{align*}
\text{if action='A}_n\rightarrow \text{action:='O'; guard}_Z(S_{n})[\text{action:='A}_{k};A/A_k] &\text{ fi}
\end{align*}
\]

\(\text{action:='A}_i\); (\(\mu A.S \)) \(\approx \text{abort if } n=0 \)

\(\approx \text{action:='A}_i\); S[\((\mu A.S)^{n-1}/A \)] if \(n>0 \)

\(\approx \text{action:='A}_i\); action:=\text{'O'; guard}_Z(S_{i})[\text{action:='A}_{k};A/A_k][(\mu A.S)^{n-1}/A] \)

by pruning conditional

\(\approx \text{action:='O'; guard}_Z(S_{i})[\text{action:='A}_{k}; (\mu A.S)^{n-1}/A] \)

Claim: \(\text{AS}^n(i) \approx \text{action:='A}_i\); (\(\mu A.S \))^n \) for \(1 \leq i \leq p \).

Proof: by induction on \(n \), trivial for \(n=0 \).

Suppose the result holds for \(n \),

\(\text{AS}^{n+1}(i) \approx \text{action:='O'; guard}_Z(S_{i})[\text{AS}^n(j)/A_j|1 \leq j \leq p] \) by definition

\(\approx \text{action:='O'; guard}_Z(S_{i})[\text{action:='A}_{j}; (\mu A.S)^{n}/A_j|1 \leq j \leq p] \) by induction hyp

\(\approx \text{action:='A}_i'; \text{action:='O'; guard}_Z(S_{i})[\text{action:='A}_{j}; (\mu A.S)^{n}/A_j|1 \leq j \leq p] \)

by adding a redundant assignment.

\(\approx \text{action:='A}_i'; (\mu A.S)^{n+1} \)

which proves the claim by induction.

From the premise we have \(\text{AS}^n(1) \leq S' \) for all \(n < \omega \)

Thus \(\text{action:='A}_1'; (\mu A.S)^n \leq S' \)

So by the general induction rule for recursion we have

\(\text{action:='A}_1'; (\mu A.S) \leq S' \) ie \(\text{AS} \leq S' \) as required.

Identification:

If two actions \(X \) and \(Y \) differ only in that replacing \(Y \) by \(X \) in both definitions gives the same result then we can identify them and replace \(Y \) by \(X \) everywhere and remove \(Y \) from the system.

Adding unnecessary statements to actions which are similar may enable them to be identified: this may make the system less efficient but with a simplified structure. In our development of the Schorr-Waite algorithm we add a single test which enables us to identify all four actions in a system which collapses to a single tail-recursive procedure and thence to an iterative equivalent.

Proof: By re-ordering the actions we may assume \(X=A_p \) and \(Y=A_m \) where there are \(m \) actions in the original system.

Let \(L=\{A_1 \equiv S_1,..,A_p \equiv S_p,..,A_m \equiv S_m\} \) where \(1 \leq p < m \)
and $R = \langle A_1 \equiv S[J/A_m], \ldots, A_p \equiv S_p[A_p/A_m], \ldots, A_{m-1} \equiv S_{m-1}[A_p/A_m] \rangle$
be action systems where $S_p[A_p/A_m] \approx S_m[A_p/A_m]$. We want to prove $L \approx R$.

Use the induction rule for action systems:

Claim: $L(0)(k) \approx R(0)(k)$, $1 \leq k \leq m-1$ and $L(m)(m) \approx R(p)(p)$ for $n < \omega$.

$L(0)(k) \approx R(0)(k)$ trivially, suppose the result holds for n:

$L(n+1)(k) \approx S_k[L(n)(j)/A_j | 1 \leq j \leq m]$ for $1 \leq k \leq m$.

By induction hypothesis $L(n)(m) \approx R(n)(p)$, so:

$L(n+1)(k) \approx S_k[A_p/A_m] [L(n)(j)/A_j | 1 \leq j \leq m]$ for $1 \leq k \leq m$.

$L(n)(m) \approx S_m[A_p/A_m] [R(n)(j)/A_j | 1 \leq j \leq m]$ by premise

which proves the claim.

Hence $\text{beg action:='A_1': } L(n)(1) \text{ end } \approx \text{beg action:='A_1': } R(n)(1) \text{ end } \leq R$

and $L \leq R$ by induction rule for action systems.

Similarly $\text{beg action:='A_1': } R(n)(1) \text{ end } \approx \text{beg action:='A_1': } L(n)(1) \text{ end } \leq L$

and $R \leq L$. Hence $L \approx R$ as required.

Recursion Removal:

Let $X \equiv S$ be an action which depends only on X and Y (ie the only action calls in S are to X or to Y). We want to remove the recursion in X by enclosing S in a loop, replacing X by a statement which causes re-execution of the loop, replacing Y by a statement which causes termination of the loop and putting a single Y after the loop. Thus for example:

$X \equiv S \approx X \equiv \text{do do } S[\text{skip, exit / X,Y] od; Y}$

Arsac [Arsac 82], describes this transformation for the case when the action system is regular and all the calls to X are in terminal positions. For our action systems we are able to prove two generalisations of this recursion removal:

Theorem(A): If the action system AS containing X (as above) is regular then:

$X \equiv S \approx X \equiv \text{do do } S[\text{exit, exit(2) / X,Y] od od; Y}$

Cor: If X is tail-recursive (ie all the calls to X in S are in terminal positions) then:

$X \equiv S \approx X \equiv \text{do do } S[\text{skip, exit / X,Y] od; Y}$
Proof of Cor:
If all calls to X are terminal then \(S[\text{exit}, \text{exit}(2) / X,Y] \) is reducible since the only terminal statements with terminal value one are the \text{exits} which replace the calls of X and which are in terminal positions. (S cannot have a terminal statement with terminal value >0 since it is the body of an action).

\[
S[\text{exit}, \text{exit}(2) / X,Y] \rightarrow_1 S[\text{skip}, \text{exit} / X,Y]
\]

so by double iteration:

\[
\text{do do } S[\text{exit}, \text{exit}(2) / X,Y] \text{ od od } \approx \text{do } S[\text{skip}, \text{exit} / X,Y] \text{ od}.
\]

Theorem(B): If all calls (to X and Y) in S are in terminal positions and all terminal statements of S are action calls (to X or Y) then:

\[
X \equiv S \approx X \equiv \text{do } S[\text{skip}, \text{exit} / X,Y] \text{ od}; Y
\]

Note: A more general version of Theorem(B) which allows non-terminal calls to X or Y in S will fail since if S contains \(X;S_1 \) or \(Y;S_1 \) then on termination of the call to X or Y we should execute \(S_1 \) but if we replace X or Y by \text{exits} then any statement after them (ie \(S_1 \)) will never be executed. This does not matter in Theorem(A) because the fact that the system is regular means that an action call can only ever be terminated by a call to Z (the terminating action) and this causes immediate termination of the whole system. Thus any statements following an action call in a regular action system will never be executed.

Proof of Theorem B:

Let \(A_q \) represent X, \(A_r \) represent Y, \(S_q \) represent S. We wish to prove the following action systems to be equivalent:

\[
\begin{align*}
A_S &= \langle A_1 \equiv S_1, \ldots, A_q \equiv S_q, \ldots, A_p \equiv S_p \rangle \\
A_S' &= \langle A_1 \equiv S_1, \ldots, A_q \equiv \text{do } S_q[\text{skip, exit} / A_q, A_r] \text{ od}; A_r, \ldots, A_p \equiv S_p \rangle \\
\text{where } 1 \leq q \leq p \text{ and } 1 \leq r \leq p \text{ and } q \neq r.
\end{align*}
\]

Claim: \(A_S^n \subseteq A_S' \).

Proof: By induction on \(n \):

For \(i \neq q \) this is easy since:

\[
A_S^{n+1}(i) \approx \text{action} := \text{‘O’}; S_i[A_S^n(j) / A_j] \leq \text{action} := \text{‘O’}; S_i[A_S'(j) / A_j] \approx A_S'(i) \text{ by folding.}
\]

Let \(S' := \text{do } S_q[\text{skip, exit} / A_q, A_r] \text{ od}; A_r \).

\[
A_S' \approx \text{action} := \text{‘A_1’}; A \text{ where proc } A \\
\hspace{1cm} \text{if } \text{action} := \text{‘A_1’} \rightarrow \text{action} := \text{‘O’}; \text{guard}_Z(S_1)[\text{action} := \text{‘A_i’}; A/A_i|1 \leq i \leq p] \\
\hspace{2cm} \ldots \\
\hspace{1cm} \square \text{action} := \text{‘A_q’} \rightarrow \text{action} := \text{‘O’}; \text{guard}_Z(S')[\text{action} := \text{‘A_i’}; A/A_i|1 \leq i \leq p] \\
\hspace{2cm} \ldots
\]

17
All action calls in S_q are in terminal positions so all the if statements introduced by guard_Z can be pruned away.

$\text{guard}_Z(S)[\text{action}:='A_r';A/A_q]_{1\leq i\leq p}$ \approx $\text{depth}=1; \text{while} \text{depth}=1 \text{ do }$

$\text{guard}_1(S_q[\text{skip.exit}/A_q,A_r]) \text{ od}; A, [\text{action}:='A_r';A/A_q]_{1\leq i\leq p}$ \approx $\text{depth}=1; \text{while} \text{depth}=1 \text{ do } \text{guard}_1(S_q[\text{skip.exit}/A_q,A_r]) \text{ od}; \text{action}:='A_r';A$

Claim(i):

\approx $\{\text{depth}=1; \text{while} \text{depth}=1 \text{ do } \text{guard}_1(S_q[\text{skip.exit}/A_q,A_r]) \text{ od}; \text{action}:='A_r';A$

$\leq \{\text{depth}=1\}; \text{depth}=0; S_q[\text{action}:='A_q';A, \text{action}:='A_r';A/A_q,A_r]$.

Proof: of Claim(i) by induction on n. Trivial for $n=0$. Assume true for n:

\approx $\{\text{depth}=1; \text{while} \text{depth}=1 \text{ do } \text{guard}_1(S_q[\text{skip.exit}/A_q,A_r]) \text{ od}; \text{action}:='A_r';A$

$\leq \{\text{depth}=1\}; \text{depth}=0; S_q[\text{action}:='A_q';A, \text{action}:='A_r';A/A_q,A_r]$.

by simple absorption since S_q is regular and A_q,A_r are the only terminal statements with terminal value zero.

\approx $\{\text{depth}=1; S_q[\{\text{depth}=1\}; \text{while} \text{depth}=1 \text{ do } \text{guard}_1(S_q[\text{skip.exit}/A_q,A_r]) \text{ od}; \text{action}:='A_r';A/A_q,A_r]$ by pruning the if's.

\approx $\{\text{depth}=1; S_q[\{\text{depth}=1\}; \text{depth}=0; S_q[\text{action}:='A_q';A, \text{action}:='A_r';A/A_q,A_r]$ by ind hyp.
\[
\approx \{\text{depth}=1\}; \text{depth}:=0; S_q[\text{action}:=\text{A}_q;'A, \text{action}:=\text{A}_q;'A / A_q, A_r], \\
\text{action}:=\text{A}_q;'A / A_q, A_r]
\]
since these are the only occurrences of depth.
\[
\approx \{\text{depth}=1\}; \text{depth}:=0; S_q[\text{action}:=\text{A}_q;'A, \text{action}:=\text{A}_q;'A / A_q, A_r]
\]
by action folding. Which proves Claim(i) by induction.

Hence by the induction rule for loops:
\[
S'[\text{action}:=\text{A}_q;'A, \text{action}:=\text{A}_q;'A / A_q, A_r]
\]
\[
\leq \text{depth}:=1; \text{depth}:=0; S_q[\text{action}:=\text{A}_q;'A, \text{action}:=\text{A}_q;'A / A_q, A_r]
\]
Hence \(S_q[\text{action}:=\text{A}_q;'A, \text{action}:=\text{A}_q;'A / A_q, A_r]\) by induction hypothesis.

\[
\text{depth}:=0; \text{AS'} \leq \text{AS}
\]

Conversely:

Claim(ii): \(\text{AS}^n(i) \leq \text{AS}'^n(i)\) for \(1 \leq i \leq p\).

By induction on \(n\):
\[
\text{AS}^{n+1}(q) \leq \text{depth}:=1; \text{while depth}=1 \text{ do } S_q[\text{skip,depth}:=0/A_q,A_r] \od_1^{n+1}; \text{AS}'^n(r).
\]

Since
\[
\text{AS}^{n+1}(q) \leq S_q[\text{AS}'^n(q),\text{AS}'^n(r)/A_q,A_r]
\]
\[
\leq S_q[\text{depth}:=1; \text{while depth}=1 \text{ do } S_q[\text{skip,depth}:=0/A_q,A_r] \od_1^n; \text{AS}'^{n+1}(r),
\text{AS}'^n(r) / A_q,A_r]
\]
by induction hypothesis.
\[
\approx \text{depth}:=1; S_q[\text{while depth}=1 \text{ do } S_q[\text{skip,depth}:=0/A_q,A_r] \od_1^n; \text{AS}'^n(r),
\text{depth}:=0; \text{AS}'^n(r) / A_q,A_r]
\]
\[
\leq \text{depth}:=1; S_q[\text{while depth}=1 \text{ do } S_q[\text{skip,depth}:=0/A_q,A_r] \od_1^n; \text{AS}'^n(r),
\text{depth}:=0; \text{AS}'^n(r) / A_q,A_r]
\]
by action folding.

Hence \(\text{AS}^{n+1}(q) \leq \text{depth}:=1; \text{while depth}=1 \text{ do } S_q[\text{skip,depth}:=0/A_q,A_r] \od_1^{n+1}; \text{AS}'^n(r)\).

\[
\approx \text{depth}:=1; \text{while depth}=1 \text{ do } S_q[\text{skip,depth}:=0/A_q,A_r] \od_1^{n+1}; \text{AS}'^n(r)
\]
by absorption.

\[
\approx \text{guard}_0(\text{do } S_q[\text{skip,exit}/A_q,A_r] \od_1); \text{AS}'^n(r)
\]
\[
\approx \text{guard}_0(\text{do } S_q[\text{skip,exit}/A_q,A_r] \od_1; A_r); [\text{AS}'^n(r)/A_r]
\]
\[
\approx \text{AS}'^{n+1}(r)\] since \(S_q\) contains calls to \(A_q\) and \(A_r\) only.
Hence $AS^n(i) \leq AS'(i)$ for $1 \leq i \leq p$ and $n < \omega$.

Hence by induction $AS \leq AS'$ and thus $AS \approx AS'$ as required.

Regular Action Systems:

Theorem: Translation to Iterative Form: The regular action system:

$$AS = \langle A_1 \equiv S_1, A_2 \equiv S_2, \ldots, A_n \equiv S_n \rangle$$

with terminating action Z is equivalent to the iterative statement:

$$AS' = \text{action:='}A_1'; \text{do do \ldots do if action:='}A_i' \rightarrow S_i[\text{action:='}A_i'; \text{exit} / A_i | 1 \leq i \leq n][\text{exit}(2) / Z] \text{ od od}.$$

Proof:

Let IF be:

$$\text{if action:='}A_1' \rightarrow S_1$$

$$\ldots$$

$$\text{if \ldots if}$$

Then by the definitional transformation:

$$AS \approx \text{action:='}A_1'; \text{A where proc A} \equiv \text{action:='}O'; \text{guard}_{Z}(\text{IF}[\text{action:='}A_1'; A / A_i | 1 \leq i \leq n][\text{action:='}Z' / Z]).$$

We want to prove that this is equivalent to:

$$\text{action:='}A_1'; \text{do do IF}[\text{action:='}A_i'; \text{exit} / A_i | 1 \leq i \leq n][\text{exit}(2) / Z] \text{ od od}.$$

Note that we don’t care about the final value of action.

Hence we need to prove that the procedure:

$$\text{proc A} \equiv \text{action:='}O'; \text{guard}_{Z}(\text{IF}[\text{action:='}A_1'; A / A_i | 1 \leq i \leq n][\text{action:='}Z' / Z]).$$

is equivalent to the double loop:

$$\text{do do IF}[\text{action:='}A_i'; \text{exit} / A_i | 1 \leq i \leq n][\text{exit}(2) / Z] \text{ od od}.$$

The proof uses the following lemma:

Lemma: Induction rule for double iteration.

For the double loop do do S od od we define the nth truncation by:

$$\text{do do S od od}^n = \text{abort}$$

$$\text{do do S od od}^{n+1} = \text{action:='}O'; \text{guard}_{Z}(\text{S-(2,3)})[\text{do do S od od}^n / (n,T)][\text{action:='}Z' / (n,T)] \tau = 0 \lor \tau = 1$$

where action is a new variable.

Then if $\text{do do S od od}^n \leq S'$ for all $n < \omega$ then $\text{do do S od od} \leq S'$.
Proof: The $S_{(2,3)}$ will reduce all the terminal statements with terminal value >0 in the original loop by two (to compensate for the fact that they have been moved out of two loops), the guard Z is to ensure that terminal statements with terminal value 2 are dealt with correctly and terminal statements of S which do not terminate the loop are replaced by the next lower truncation.

A rigorous proof involves translating the double loop to a double while loop (using the definitional transformations), transforming the double while loop to a single loop using lemma B in the previous Chapter, and showing that the nth truncations of this while loop are equivalent to $\text{do do } S \text{ od od}^n$. The details are omitted for brevity.

We can easily show that the nth truncation:

$$\text{proc A } \equiv \ 	ext{action:='O'}; \text{guard}_Z (\text{IF[action:='A i'; exit / A_i|1\leq i\leq n]}[\text{action:='Z' / Z}].)^n$$

is equivalent to:

$$\text{do do IF[action:=='A Y;exit / A_i|1\leq i\leq n]}[\text{exit(2) / Z}] \text{ od od}$$

by induction on n since the only terminal statements of IF are action calls (because the original action system was regular).

Hence the only terminal statements of $\text{IF[action:=='A i;exit / A_i|1\leq i\leq n]}[\text{exit(2) / Z}]$ with terminal value zero or one are the exits which arise from the substitution of action calls.

This Lemma then completes the proof of the theorem. We can use this theorem to prove Theorem (A):

Proof of Theorem (A):

Recall that the action system is regular and S_q contains calls to A_q and A_r only.

By the previous theorem, since AS is regular:

$$AS \approx \ 	ext{action:='A_1'};$$

$$\text{do do if action='A_1' } \rightarrow \ S_1[\text{action:='A_1'; exit/A_i|1\leq i\leq p}]$$

$$\ldots$$

$$\text{□ action='A_q' } \rightarrow \ S_q[\text{action:='A_q'; exit/A_i|1\leq i\leq p}]$$

$$\ldots$$

$$\text{□ action='A_p' } \rightarrow \ exit(2) \text{ fi od od}$$

where A_q represents X, A_r represents Y ($1\leq q<p$, $1\leq r\leq p$, $q\neq r$) and A_p is the unique terminating action.

From the premises we deduce that all the terminal statements in S_q are of the form:

$$\text{action:='A_q'; exit or action:='A_r'; exit}.$$

This is a double-nested loop so we can use selective unrolling on selected terminal statements with terminal value one. We will unroll on the statements $\text{action:='A_q'; exit}$ and use action:='A_q' as the extra condition on the inserted loop. The body of the inserted loop can then be simplified to give (for the qth condition):
The else exit(2) can be replaced by else exit(3) since the inserted loop is in a terminal position in the body of the outer double loop. Use selective unrolling on the inserted loop to replace action:=‘A_r’; exit by action:=‘A_r’; exit(3). Now the predicate action:=‘A_q’ is preserved by the loop body and is true initially so we can remove the test and remove the statement action:=‘A_q’ replacing A_q.

We can add an exit to the end of this statement (since it is at the end of the body of a double loop), then translating the result back to a regular action system completes the proof.